Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Novel direct method on the life prediction of component under high temperature-creep fatigue conditions

Chen, Haofeng and Gorash, Yevgen (2013) Novel direct method on the life prediction of component under high temperature-creep fatigue conditions. In: 13th International Conference on Fracture, 2013-06-16 - 2013-06-21, The China National Convention Center (CNCC).

[img] PDF (Chen HF & Gorash Y - Pure - Novel direct method on th lisfe prediction o component under high temperature-creep farigue conditions Jun 2013)

Download (2MB)


This paper presents a novel direct method, within the Linear Matching Method (LMM) framework, for the direct evaluation of steady state cyclic behaviour of structures subjected to high temperature – creep fatigue conditions. The LMM was originally developed for the evaluation of shakedown and ratchet limits. The latest extension of the LMM makes it capable of predicting the steady state stress strain solutions of component subjected to cyclic thermal and mechanical loads with creep effects. The proposed iterative method directly calculates the creep stress and cyclically enhanced creep strain during the dwell period for the assessment of the creep damage, and also creep enhanced total strain range for the assessment of fatigue damage of each load cycle. To demonstrate the efficiency and applicability of the method to assess the creep fatigue damage, two types of weldments subjected to reverse bending moment at elevated temperature of 550C are simulated by the proposed method considering a Ramberg-Osgood model for plastic strains under saturated cyclic conditions and a power-law model in “time hardening” form for creep strains during the dwell period. Further experimental validation shows that the proposed direct method provides a general purpose technique for the creep fatigue damage assessment with creep fatigue interaction.