Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Agile solar sailing in three-body problem : Motion between artificial equilibrium points

Heiligers, Jeannette and McInnes, Colin (2013) Agile solar sailing in three-body problem : Motion between artificial equilibrium points. In: 64th International Astronautical Congress 2013, 2013-09-23 - 2013-09-27.

[img] PDF (Heiligers J & McInnes CR - Pure - Agile solar sailing in three-body problem - Motion between artificial equilibrium points Sep 2013)
Heiligers_J_McInnes_CR_Pure_Agile_solar_sailing_in_three_body_problem_Motion_between_artificial_equilibrium_points_Sep_2013.pdf
Preprint

Download (10MB)

    Abstract

    This paper proposes a range of time-optimal, solar sail trajectories between artificial equilibria in the Sun-Earth three body system to create an agile solar sailing mission. This allows different mission objectives to be fulfilled at different AEPs during different stages of the mission. The analyses start from a solar sail at the sub-L1 point (sunward of the classical L1 point) which is targeted by NASA’s Sunjammer mission (launch in 2014) for advanced space weather warning. From this sub-L1 point, trajectories are investigated that: 1) take the solar sail to an AEP in the ecliptic plane, but slightly trailing the Earth to be ahead of the Earth in the Parker spiral to potentially increase space weather warning times even further; 2) take the solar sail to and between AEPs displaced above or below the ecliptic plane for high-latitude observations; 3) take the solar sail from the vicinity of the L1 point to the vicinity of the L¬2 point for additional Earth observations, geomagnetic tail investigations and astronomical observations. To find time-optimal trajectories, the optimal control problem associated with each of the transfers is defined and solved using a direct pseudospectral method. The resulting time of flights are reasonable, ranging from 85 days to 232 days, and the transfers are very smooth, requiring only a minimum solar sail steering effort in most cases. Since all results are generated for a sail performance equal to that of the Sunjammer sail, the proposed trajectories provide interesting end-of-mission opportunities for the Sunjammer sail after it retires at the sub-L1 point.