Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Aggregate and fractal tessellations

Tchoumatchenko, Konstantin and Zuev, Sergei (2001) Aggregate and fractal tessellations. Probability Theory and Related Fields, 121 (2). pp. 198-218. ISSN 0178-8051

Text (strathprints004605)
Accepted Author Manuscript

Download (476kB) | Preview


Consider a sequence of stationary tessellations {‹n}, n=0,1,..., of  d consisting of cells {Cn(xin)}with the nuclei {xin}. An aggregate cell of level one, C01(xi0), is the result of merging the cells of ‹1 whose nuclei lie in C0(xi0). An aggregate tessellation ‹0n consists of the aggregate cells of level n, C0n(xi0), defined recursively by merging those cells of ‹n whose nuclei lie in Cnm1(xi0). We find an expression for the probability for a point to belong to atypical aggregate cell, and obtain bounds for the rate of itsexpansion. We give necessary conditions for the limittessellation to exist as nMX and provide upperbounds for the Hausdorff dimension of its fractal boundary and forthe spherical contact distribution function in the case ofPoisson-Voronoi tessellations {‹n}.