Monomerizing alkali-metal 3,5-dimethylbenzyl salts with tris(N, N -dimethyl-2-aminoethyl)amine (MeTREN) : structural and bonding implications

Armstrong, David R. and Davidson, Matthew G. and Garcia-Vivo, Daniel and Kennedy, Alan R. and Mulvey, Robert E. and Robertson, Stuart D. (2013) Monomerizing alkali-metal 3,5-dimethylbenzyl salts with tris(N, N -dimethyl-2-aminoethyl)amine (MeTREN) : structural and bonding implications. Inorganic Chemistry, 52 (20). pp. 12023-12032. ISSN 0020-1669 (https://doi.org/10.1021/ic401777x)

[thumbnail of Armstrong-etal-IC2013-monomerizing-alkali-metal-3,5-dimethylbenzyl-salts]
Preview
PDF. Filename: Armstrong_etal_IC2013_monomerizing_alkali_metal_3_5_dimethylbenzyl_salts.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (3MB)| Preview

Abstract

The series of alkali-metal (Li, Na, K) complexes of the substituted benzyl anion 3,5-dimethylbenzyl (MeCHCH ) derived from 1,3,5-trimethylbenzene (mesitylene) have been coerced into monomeric forms by supporting them with the tripodal tetradentate Lewis donor tris(N,N-dimethyl-2-aminoethyl)amine, [N(CH CHNMe), MeTREN]. Molecular structure analysis by X-ray crystallography establishes that the cation-anion interaction varies as a function of the alkali-metal, with the carbanion binding to lithium mainly in a σ fashion, to potassium mainly in a π fashion, with the interaction toward sodium being intermediate between these two extremes. This distinction is due to the heavier alkali-metal forcing and using the delocalization of negative charge into the aromatic ring to gain a higher coordination number in accordance with its size. MeTREN binds the metal in a η mode at all times. This coordination isomerism is shown by multinuclear NMR spectroscopy to also extend to the structures in solution and is further supported by density functional theory (DFT) calculations on model systems. A MeTREN stabilized benzyl potassium complex has been used to prepare a mixed-metal ate complex by a cocomplexation reaction with tBuZn, with the benzyl ligand acting as an unusual ditopic σ/π bridging ligand between the two metals, and with the small zinc atom relocalizing the negative charge back on to the lateral CH arm to give a complex best described as a contacted ion pair potassium zincate.