Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Compton scattering for spectroscopic detection of ultra-fast, high flux, broad energy range X-rays

Cipiccia, Silvia and Wiggins, Mark and Maneuski, Dzmitry and Brunetti, Enrico and Vieux, Gregory and Yang, Xue and Issac, Riju and Welsh, Gregor H. and Anania, Maria Pia and Islam, Mohammad and Ersfeld, Bernhard and Montgomery, Rachel and Smith, Gary and Hoek, Matthias and Hamilton, David J. and Lemos, Nuno R. C. and Symes, Dan and Rajeev, Pattathil P. and O'Shea, V. and Dias, João M. and Jaroszynski, Dino (2013) Compton scattering for spectroscopic detection of ultra-fast, high flux, broad energy range X-rays. Review of Scientific Instruments, 84 (11). ISSN 0034-6748

[img] PDF
1.4825374.pdf
Final Published Version

Download (1MB)

    Abstract

    Compton side-scattering has been used to simultaneously downshift the energy of keV to MeV energy range photons while attenuating their flux to enable single-shot, spectrally resolved, measurements of high flux X-ray sources to be undertaken. To demonstrate the technique a 1 mm thick pixelated cadmium telluride detector has been used to measure spectra of Compton side-scattered radiation from a Cobalt-60 laboratory source and a high flux, high peak brilliance X-ray source of betatron radiation from a laser-plasma wakefield accelerator.