Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Adaptive solution of a one-dimensional order reconstruction problem in Q-tensor theory of liquid crystals

Ramage, A. and Newton, C.J.P. (2007) Adaptive solution of a one-dimensional order reconstruction problem in Q-tensor theory of liquid crystals. Liquid Crystals, 34 (4). pp. 479-487. ISSN 0267-8292

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In this paper we illustrate the suitability of an adaptive moving mesh method for modelling a one-dimensional liquid crystal cell using Q-tensor theory. Specifically, we consider a time-dependent problem in a Pi-cell geometry which admits two topologically different equilibrium states and model the order reconstruction which occurs on the application of an electric field. An adaptive finite element grid is used where the grid points are moved according to equidistribution of a monitor function based on a specific property of the Q-tensor. We show that such moving meshes provide the same level of accuracy as uniform grids but using far fewer points, and that inaccurate results can be obtained if uniform grids are not sufficiently refined.