Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Versatile pectin grafted poly (N-isopropylacrylamide) : modulated targeted drug release

Assaf, Shereen M. and Abul-Haija, Yousef M. and Fares, Mohammad M. (2011) Versatile pectin grafted poly (N-isopropylacrylamide) : modulated targeted drug release. Journal of Macromolecular Science Part A Pure and Applied Chemistry, 48 (6). pp. 493-502.

Full text not available in this repository. Request a copy from the Strathclyde author


This study describes synthesis and optimization of pectin grafted poly(N-isopropylacrylamide) hydrogels as vehicles for colon-targeted theophylline model drug release. The gels were prepared in the presence of N, N′–methylenebisacrylamide (MBAA) crosslinker and ceric ammonium nitrate (CAN) initiator under N2 atmosphere. Optimum conditions, in terms of percent of grafting (%G), were determined as follows: pectin = 1.0 g, [NIPAAm] = 26.51 mM, [MBAA] = 0.65 mM, [CAN] = 0.073 mM, polymerization temperature = 30°C and time = 4.0 h. Hydrogels were characterized by FTIR, TGA, DSC, XRD and SEM. The formed hydrogel did not have a thermo-sensitivity behavior. The in vitro percent drug release was studied in terms of different percent of grafting and different polymerization temperatures under two pH values namely 5.5 and 7.4. Conclusively, the optimum colon-targeted vehicle properties that provide the least drug release at pH5.5 and the most drug release at pH7.4 were as follows: [NIPAAm] = 26.51 mM and [MBAA] = 0.56 mM, polymerization temperature = 30°C and %G = 55.5.