Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

The Orbital Dynamics of Advanced Planetary Observation Systems

Anderson, Pamela and Macdonald, Malcolm (2013) The Orbital Dynamics of Advanced Planetary Observation Systems. PhD thesis, UNSPECIFIED.

[img] PDF
Accepted Author Manuscript

Download (3MB)


    The increasing interest from the science community to obtain greater quality and quantity of data from Earth and other planets in the Solar System drives research towards developing new means of performing space-based observation. This thesis attempts to address some aspects of this issue by developing novel spacecraft orbits to enhance the opportunities for remote sensing of Earth and the inner planets. Within this thesis, particular emphasis is placed on investigation of a system that can overcome the critical data deficit for the high-latitude regions of the Earth. These newly proposed highly-elliptical orbits are termed Taranis orbits (Celtic God of thunder) and can offer completion of the Global Observing System using fewer spacecraft and to higher resolution than any other proposed system. Various low-thrust propulsion technologies are considered to enable the Taranis orbits, with electric propulsion found to be the most beneficial following mission analysis. Design of constellations for high-latitude remote sensing is also conducted which highlights both 12 and 16 h orbits to meet the defined requirements of a polar orbiting mission. Similar methods are also used to develop elliptical sun-synchronous orbits at Earth and novel orbits around Mars, Mercury and Venus to enable new and unique investigations.