Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Semiconductor mode-locked lasers with integrated dispersion control

Strain, M.J. and Stolarz, P.M. and Sorel, M. (2011) Semiconductor mode-locked lasers with integrated dispersion control. In: 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, CLEO EUROPE/EQEC 2011, 2011-05-22 - 2011-05-26.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Semiconductor mode-locked lasers (MLL) often make use of distributed Bragg reflectors (DBRs) as one of the cavity reflectors, allowing both high peak reflectivity, and the central wavelength selection necessary for many applications[1,2]. However, although the passive filter bandwidth of these reflectors can be up to a few nanometres, the typical mode-locked 3dB bandwidth is significantly smaller, as shown in Fig.1(a). This bandwidth truncation leads directly to pulses with larger temporal widths than those generated in Fabry-Pérot (FP) type devices where the bandwidth can be an order of magnitude larger. Furthermore, the generated pulse-width from DBR MLLs is highly dependent on the injection current conditions, unlike their FP counterparts.