Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Lethal effects of high intensity violet 405-nm light on saccharomyces cerevisiae, candida albicans and on dormant and germinating spores of aspergillus niger

Murdoch, L.E. and McKenzie, K. and MacLean, M. and MacGregor, S.J. and Anderson, J.G. (2013) Lethal effects of high intensity violet 405-nm light on saccharomyces cerevisiae, candida albicans and on dormant and germinating spores of aspergillus niger. Fungal biology, 117 (7-8). pp. 519-527. ISSN 1878-6146

[img]
Preview
Text (Murdoch-etal-FB2013-Lethal-effects-of-high-intensity-violet-405-nm-light-on-Saccharomyces-cerevisiae-accepted-manuscript)
Murdoch_et_al_Fungal_Biology_accepted_manuscript.pdf
Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (417kB) | Preview

Abstract

This study assessed the effects of high-intensity violet light on selected yeast and mould fungi. Cell suspensions of Saccharomyces cerevisiae, Candida albicans, and dormant and germinating spores (conidia) of the mould Aspergillus niger were exposed to high-intensity narrow band violet light with peak output at 405 nm generated from a light-emitting diode (LED) array. All three fungal species were inactivated by the 405-nm light without a requirement for addition of exogenous photosensitiser chemicals. Of the fungal species tested, S. cerevisiae was most sensitive and dormant conidia of A. niger were most resistant to 405-nm light exposure. Five-log10 colony forming units per millilitre (CFU ml1) reductions of the tested species required exposure doses of 288 J cm2 for S. cerevisiae, 576 J cm2 for C. albicans, and a much higher value of 2.3 kJ cm2 for dormant conidia of A. niger. During germination, A. niger conidia became more sensitive to 405-nm light exposure and sensitivity increased as germination progressed over an 8 h test period. Light exposure under aerobic and anaerobic conditions, together with results obtained using ascorbic acid as a scavenger of reactive oxygen species, revealed that 405-nm light inactivation in fungi involved an oxygen-dependent mechanism, as previously described in bacteria. The inactivation results achieved with yeast cells and fungal spores together with operational advantages associated with the use of a visible (nonultraviolet (UV)) light source highlight the potential of 405-nm light for fungal decontamination applications.