Picture of virus

Open Access research that helps to deliver "better medicines"...

Strathprints makes available scholarly Open Access content by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), a major research centre in Scotland and amongst the UK's top schools of pharmacy.

Research at SIPBS includes the "New medicines", "Better medicines" and "Better use of medicines" research groups. Together their research explores multidisciplinary approaches to improve understanding of fundamental bioscience and identify novel therapeutic targets with the aim of developing therapeutic interventions, investigation of the development and manufacture of drug substances and products, and harnessing Scotland's rich health informatics datasets to inform stratified medicine approaches and investigate the impact of public health interventions.

Explore Open Access research by SIPBS. Or explore all of Strathclyde's Open Access research...

Hybrid modeling of relativistic underdense plasma photocathode injectors

Xi, Y. and Hidding, B. and Bruhwiler, D. and Pretzler, G. and Rosenzweig, J. B. (2013) Hybrid modeling of relativistic underdense plasma photocathode injectors. Physical Review Special Topics: Accelerators and Beams, 16 (3). ISSN 1098-4402

[img]
Preview
PDF
PhysRevSTAB.16.031303.pdf
Final Published Version

Download (2MB) | Preview

Abstract

The dynamics of laser ionization-based electron injection in the recently introduced plasma photocathode concept is analyzed analytically and with particle-in-cell simulations. The influence of the initial few-cycle laser pulse that liberates electrons through background gas ionization in a plasma wakefield accelerator on the final electron phase space is described through the use of Ammosov-Deloine-Krainov theory as well as nonadiabatic Yudin-Ivanov (YI) ionization theory and subsequent downstream dynamics in the combined laser and plasma wave fields. The photoelectrons are tracked by solving their relativistic equations of motion. They experience the analytically described transient laser field and the simulation-derived plasma wakefields. It is shown that the minimum normalized emittance of fs-scale electron bunches released in mulit-GV/m-scale plasma wakefields is of the order of 10-2 mm mrad. Such unprecedented values, combined with the dramatically increased controllability of electron bunch production, pave the way for highly compact yet ultrahigh quality plasma-based electron accelerators and light source applications.