Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Tunable diode laser based concentration measurements of water vapour and methane on a solid oxide fuel cell

Lengden, Michael and Cunningham, Robert and Johnstone, Walter (2013) Tunable diode laser based concentration measurements of water vapour and methane on a solid oxide fuel cell. Journal of Lightwave Technology, 31 (9). 1354 - 1359. ISSN 0733-8724

Full text not available in this repository. Request a copy from the Strathclyde author


This paper presents concentration measurements of water vapour and methane, taken in-situ on an operational solid oxide fuel cell (SOFC) test rig using tunable diode laser spectroscopy (TDLS). Methane concentration measurements are presented for the TDLS system and are compared with concentration measurements taken using gas chromatography (GC). Furthermore, purge times for the SOFC gas-analysis system have been calculated using TDLS, which are measurements that cannot be obtained directly using GC. Finally, water vapour concentration measurements in the SOFC cathode are shown for different system operating conditions: a dry cathode cycle and during the introduction of water vapour. As GC cannot be used to measure water vapour in the SOFC cathode stream, a direct comparison cannot be made with the TDLS measurements.