Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Application of k-means method to pattern recognition in on-line cable partial discharge monitoring

Peng, XS and Zhou, CK and Hepburn, D and Judd, Martin and Siew, Wah Hoon (2013) Application of k-means method to pattern recognition in on-line cable partial discharge monitoring. IEEE Transactions on Dielectrics and Electrical Insulation, 20 (3). pp. 754-761. ISSN 1070-9878

[img]
Preview
PDF (Application of K-Means Method to Recognition of Phase Resolved Patterns in On-line Cable Partial Discharge)
Application_of_K_Means_Method_to_Recognition_of_Phase_Resolved_Patterns_in_On_line_Cable_Partial_Discharge.pdf - Accepted Author Manuscript

Download (425kB) | Preview

Abstract

On-line Partial Discharge (PD) monitoring is being increasingly adopted in an effort to improve asset management of the vast network of MV and HV power cables. This paper presents a novel method for autonomous recognition of PD patterns recorded under conditions in which a phase-reference voltage waveform from the HV conductors is not available, as is often the case in on-line PD based insulation condition monitoring. The paper begins with an analysis of two significant challenges for automatic PD pattern recognition. A methodology is then proposed for applying the K-Means method to the task of recognizing PD patterns without phase reference information. Results are presented to show that the proposed methodology is capable of recognising patterns of PD activity in on-line monitoring applications for both single-phase and three-phase cables and is also effective technique for rejecting interference signals.