Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Brittle-ductile transition during diamond turning of single crystal silicon carbide

Goel, Saurav and Luo, Xichun and Comley, Paul and Reuben, Robert L and Cox, Andrew (2013) Brittle-ductile transition during diamond turning of single crystal silicon carbide. International Journal of Machine Tools and Manufacture, 65. pp. 15-21. ISSN 0890-6955


Download (1MB) | Preview


Single crystal silicon carbide (SiC) is an ultra hard ceramic material which possesses extremely high hardness following diamond and CBN. In this experimental study, diamond turning of single crystal 6H-SiC was performed at a cutting speed of 1 m/sec on an ultra precision diamond turning machine (Moore Nanotech 350 UPL) to elucidate the microscopic origin of ductile-regime machining. Distilled water (pH value 7) was used as a preferred coolant during the course of machining in order to improve the tribological performance. A high magnification scanning electron microscope (SEM) (FIB- FEI Quanta 3D FEG) was used to examine the cutting tool. An optimum matrix of machining parameters was used to optimize the material removal rate and the machined surface roughness. A surface finish of Ra 9.2 nm, better than any previously reported value on SiC was obtained. Also, tremendously high cutting resistance was offered by SiC resulting in the observation of significant wear marks on the cutting tool just after 1 Km of cutting length. It was found out through a DXR Raman microscope that similar to other classical brittle materials (silicon and germanium etc.) an occurrence of brittle-ductile transition is responsible for the ductile-regime machining of 6H-SiC.