Instability and dynamics of two nonlinearly coupled intense laser beams in a quantum plasma
Wang, Yunliang and Shukla, Padma and Eliasson, Bengt (2013) Instability and dynamics of two nonlinearly coupled intense laser beams in a quantum plasma. Physics of Plasmas, 20 (1). 013103. ISSN 1070-664X (https://doi.org/10.1063/1.4774064)
Preview |
PDF.
Filename: PhysPlasmas_20_013103.pdf
Final Published Version Download (2MB)| Preview |
Abstract
We consider nonlinear interactions between two relativistically strong laser beams and a quantum plasma composed of degenerate electron fluids and immobile ions. The collective behavior of degenerate electrons is modeled by quantum hydrodynamic equations composed of the electron continuity, quantum electron momentum (QEM) equation, as well as the Poisson and Maxwell equations. The QEM equation accounts the quantum statistical electron pressure, the quantum electron recoil due to electron tunneling through the quantum Bohm potential, electron-exchange, and electron-correlation effects caused by electron spin, and relativistic ponderomotive forces (RPFs) of two circularly polarized electromagnetic (CPEM) beams. The dynamics of the latter are governed by nonlinear wave equations that include nonlinear currents arising from the relativistic electron mass increase in the CPEM wave fields, as well as from the beating of the electron quiver velocity and electron density variations reinforced by the RPFs of the two CPEM waves. Furthermore, nonlinear electron density variations associated with the driven (by the RPFs) quantum electron plasma oscillations obey a coupled nonlinear Schrödinger and Poisson equations. The nonlinearly coupled equations for our purposes are then used to obtain a general dispersion relation (GDR) for studying the parametric instabilities and the localization of CPEM wave packets in a quantum plasma. Numerical analyses of the GDR reveal that the growth rate of a fastest growing parametrically unstable mode is in agreement with the result that has been deduced from numerical simulations of the governing nonlinear equations. Explicit numerical results for two-dimensional (2D) localized CPEM wave packets at nanoscales are also presented. Possible applications of our investigation to intense laser-solid density compressed plasma experiments are highlighted.
ORCID iDs
Wang, Yunliang, Shukla, Padma and Eliasson, Bengt ORCID: https://orcid.org/0000-0001-6039-1574;-
-
Item type: Article ID code: 44769 Dates: DateEvent8 January 2013Published8 January 2013Published OnlineSubjects: Science > Physics Department: Faculty of Science > Physics Depositing user: Pure Administrator Date deposited: 10 Sep 2013 15:58 Last modified: 13 Jan 2025 01:48 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/44769