Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Dynamic optimal power flow for active distribution networks

Gill, Simon and Kockar, Ivana and Ault, Graham (2014) Dynamic optimal power flow for active distribution networks. IEEE Transactions on Power Systems, 29 (1). pp. 121-131. ISSN 0885-8950

[img] PDF (Dynamic Optimal Power Flow for Active Distribution Networks)
ANMDOPFpaperCopyright.pdf
Accepted Author Manuscript
License: Unspecified

Download (762kB)

Abstract

Active Network Management is a philosophy for the operation of distribution networks with high penetrations of renewable distributed generation.Technologies such as energy storage and flexible demand are now beginning to be included in Active Network Management (ANM) schemes. Optimizing the operation of these schemes requires consideration of inter-temporal linkages as well as network power flow effects. Network effects are included in Optimal Power Flow (OPF) solutions but this only optimizes for a single point in time. Dynamic Optimal Power Flow (DOPF) is an extension of OPF to cover multiple time periods. This paper reviews the generic formulation of Dynamic Optimal Power Flow before developing a framework for modeling energy technologies with inter-temporal characteristics in an ANM context. The framework includes the optimization of non-firm connected generation, Principles of Access for non-firm generators, energy storage and flexible demand. Two objectives based on maximizing export and revenue are developed and a case study is used to illustrate the technique. Results show that DOPF is able to successfully schedule these energy technologies. DOPF schedules energy storage and flexible demand to reduce generator curtailment significantly in the case study. Finally the role of DOPF in analyzing ANM schemes is discussed with reference to extending the optimization framework to include other technologies and objectives.