Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Modelling molecule-surface interactions-an automated quantum-classical approach using a genetic algorithm

Herbers, Claudia R. and Johnston, Karen and van der Vegt, Nico F. A. (2011) Modelling molecule-surface interactions-an automated quantum-classical approach using a genetic algorithm. Physical Chemistry Chemical Physics, 13 (22). pp. 10577-10583. ISSN 1463-9076

Final Published Version

Download (1MB) | Preview


We present an automated and efficient method to develop force fields for molecule-surface interactions. A genetic algorithm (GA) is used to parameterise a classical force field so that the classical adsorption energy landscape of a molecule on a surface matches the corresponding landscape from density functional theory (DFT) calculations. The procedure performs a sophisticated search in the parameter phase space and converges very quickly. The method is capable of fitting a significant number of structures and corresponding adsorption energies. Water on a ZnO(0001) surface was chosen as a benchmark system but the method is implemented in a flexible way and can be applied to any system of interest. In the present case, pairwise Lennard Jones (LJ) and Coulomb potentials are used to describe the molecule-surface interactions. In the course of the fitting procedure, the LJ parameters are refined in order to reproduce the adsorption energy landscape. The classical model is capable of describing a wide range of energies, which is essential for a realistic description of a fluid-solid interface.