Flavanoids induce expression of the suppressor of cytokine signalling 3 (SOCS3) gene and suppress IL-6-activated signal transducer and activator of transcription 3 (STAT3) activation in vascular endothelial cells.

Wiejak, Jolanta and Dunlop, Julia and MacKay, Simon and Yarwood, Stephen J. (2013) Flavanoids induce expression of the suppressor of cytokine signalling 3 (SOCS3) gene and suppress IL-6-activated signal transducer and activator of transcription 3 (STAT3) activation in vascular endothelial cells. Biochemical Journal, 454 (2). pp. 283-293. ISSN 0264-6021

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

The atherogenic cytokine IL-6 (interleukin-6) induces pro-inflammatory gene expression in VECs (vascular endothelial cells) by activating the JAK (Janus kinase)/STAT3 (signal transducer and activator of transcription 3) signalling pathway, which is normally down-regulated by the STAT3-dependent induction of the E3 ubiquitin ligase component SOCS3 (suppressor of cytokine signalling 3). Novel treatments based on the regulation of SOCS3 protein levels could therefore have value in the treatment of diseases with an inflammatory component, such as atherosclerosis. To this end we carried out a screen of 1031 existing medicinal compounds to identify inducers of SOCS3 gene expression and identified the flavanoids naringenin and flavone as effective inducers of SOCS3 protein, mRNA and promoter activity. This was in contrast with the action of traditional JAK/STAT3 inhibitors and the polyphenol resveratrol, which effectively suppress SOCS3 gene expression. Both naringenin and flavone also effectively suppressed IL-6-stimulated phosphorylation of STAT3 (Tyr705) which led to suppression of IL-6-induction of the atherogenic STAT3 target gene MCP1 (monocyte chemotactic protein-1), suggesting that their ability to induce SOCS3 gene expression is STAT3-independent. Supporting this idea was the observation that the general kinase inhibitor compound C inhibits flavone- and cAMP-dependent, but not JAK-dependent, SOCS3 induction in VECs. Indeed, the ability of flavanoids to induce SOCS3 expression requires activation of the ERK (extracellular-signal-regulated kinase)-dependent transcription factor SP3, and not STAT3. In the present paper we therefore describe novel molecular actions of flavanoids, which control SOCS3 gene induction and suppression of STAT3 signalling in VECs. These mechanisms could potentially be exploited to develop novel anti-atherogenic therapies