Picture of sea vessel plough through rough maritime conditions

Innovations in marine technology, pioneered through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Naval Architecture, Ocean & Marine Engineering based within the Faculty of Engineering.

Research here explores the potential of marine renewables, such as offshore wind, current and wave energy devices to promote the delivery of diverse energy sources. Expertise in offshore hydrodynamics in offshore structures also informs innovations within the oil and gas industries. But as a world-leading centre of marine technology, the Department is recognised as the leading authority in all areas related to maritime safety, such as resilience engineering, collision avoidance and risk-based ship design. Techniques to support sustainability vessel life cycle management is a key research focus.

Explore the Open Access research of the Department of Naval Architecture, Ocean & Marine Engineering. Or explore all of Strathclyde's Open Access research...

Integrated microspectrometer for fluorescence based analysis in a microfluidic format

Hu, Zhixiong and Glidle, Andrew and Ironside, Charles N and Sorel, Marc and Strain, Michael J and Cooper, Jon and Yin, Huabing (2012) Integrated microspectrometer for fluorescence based analysis in a microfluidic format. Lab on a Chip, 12 (16). pp. 2850-2857. ISSN 1473-0197

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We have demonstrated a monolithic integrated arrayed waveguide grating (AWG) microspectrometer microfluidic platform capable of fluorescence spectroscopic analysis. The microspectrometer in this proof of concept study has a small (1 cm × 1 cm) footprint and 8 output channels centred on different wavelengths. We show that the signals from the output channels detected on a camera chip can be used to recreate the complete fluorescence spectrum of an analyte. By making fluorescence measurements of (i) mixed quantum dot solutions, (ii) an organic fluorophore (Cy5) and (iii) the propidium iodide (PI)-DNA assay, we illustrate the unique advantages of the AWG platform for simultaneous, quantitative multiplex detection and its capability to detect small spectroscopic shifts. Although the current system is designed for fluorescence spectroscopic analysis, in principle, it can be implemented for other types of analysis, such as Raman spectroscopy. Fabricated using established semiconductor industry methods, this miniaturised platform holds great potential to create a handheld, low cost biosensor with versatile detection capability.