Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Role of metal phthalocyanine in redox complex conductivity of polyaniline and aniline black

Xavier, F.P. and Inigo, AR and Goldsmith, G.J. (1999) Role of metal phthalocyanine in redox complex conductivity of polyaniline and aniline black. Journal of Porphyrins and Phthalocyanines, 3 (6-7). pp. 679-686. ISSN 1088-4246

Full text not available in this repository. Request a copy from the Strathclyde author


Polyaniline (PA) and aniline black (AB) were prepared in powder form by the chemical method of oxidative polymerization, from which free-standing thin films were obtained by solvent evaporation using N-methyl pyrrolidinone (NMP). The thin films contained 2, 4, 6 or 8 wt% AB. Electrical measurements showed that the samples containing 4% AB exhibited the highest photoconductivity of the four concentrations. Thus there appears to be a critical ratio of PA to AB for maximum photoconductivity. Annealing up to 570 K has little effect on the conductivity. Upon adding a small quantity of copper phthalocyanine (CuPc) to the PA + AB, the electrical conductivity increased considerably and the optical absorption was extended from the UV to the near IR. The electrical conductivity mechanism is a consequence of a redox process, since AB is the oxidized state of PA and, upon illumination, there is an exchange of charge carriers. The extension of the range of optical absorption upon addition of CuPc is interpreted to suggest that CuPc photosensitizes the material and enhances the carrier transport process in the redox couple. The activation energy from the temperature-dependent conductivity and the band gap from the electrolyte electroreflectance method were determined. The activation energy for 0.4% CuPc is lowest (0.52 eV) and the corresponding band gap is determined to be 3.0 eV. This organic compound could be a good candidate for inexpensive, reliable and efficient solar energy converting devices. Copyright (C) 1999 John Wiley & Sons, Ltd.