Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

Highly-sensitive sonogram for assessment of chirp in semiconductor mode-locked lasers

Stolarz, Piotr Michal and Mezosi, Gábor and Strain, Michael John and Bryce, Ann Catrina and Sorel, Marc (2012) Highly-sensitive sonogram for assessment of chirp in semiconductor mode-locked lasers. IEEE Journal of Quantum Electronics, 48 (8). pp. 995-1003. ISSN 0018-9197

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We report on the detailed characterization of ultrashort pulses emitted from a 1.5- AlGaInAs/InP semiconductor passively mode-locked laser, operating at a repetition frequency of 35 GHz. Both the temporal and phase profiles of the pulses are retrieved using a sonogram technique that utilizes a highly-sensitive two-photon absorption waveguide detector. The system enables full characterization of pulses with energy as low as 10 fJ and peak power level of 5 mW, which is only inaccessible by a limited number of high-sensitivity measurement approaches. We show that the pulses exhibit a prevailing positive linear chirp across a wide range of biasing conditions. Its high sensitivity to the gain section current proves the dominant contribution of the gain conditions to the group delay characteristics of the emitted pulses.