Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

Highly-photostable and mechanically flexible all-organic semiconductor lasers

Foucher, C. and Guilhabert, B. and Kanibolotsky, A. L. and Skabara, P. J. and Laurand, N. and Dawson, M. D. (2013) Highly-photostable and mechanically flexible all-organic semiconductor lasers. Optical Materials Express, 3 (5). pp. 584-597. ISSN 2159-3930

[img] PDF (Foucher_etalOpticsMaterialsExpress2013)
Final Published Version

Download (1MB)


Two formats of all-organic distributed-feedback lasers with improved photostability, respectively called nanocomposite and encapsulated lasers, are reported. These lasers are compatible with mechanically-flexible platforms and were entirely fabricated using soft-lithography and spin-coating techniques. The gain elements in both types of lasers were monodisperse pi-conjugated star-shaped macromolecules (oligofluorene truxene, T3). In the nanocomposites lasers, these elements were incorporated into a transparent polyimide matrix, while in the encapsulated devices a neat layer of T3 was overcoated with Poly(vinyl alcohol) (PVA). The T3-nanocomposite devices demonstrated a 1/e degradation energy dosage up to similar to 27.0 +/- 6.5 J/cm(2) with a threshold fluence of 115 +/- 10 mu J/cm(2). This represents a 3-fold improvement in operation lifetime under ambient conditions compared to the equivalent laser made with neat organic films, albeit with a 1.6-time increase in threshold. The PVA-encapsulated lasers showed the best overall performance: a 40-time improvement in the operation lifetime and crucially no-trade-off on the threshold, with respectively a degradation energy dosage of similar to 280 +/- 20 J/cm(2) and a threshold fluence of 36 +/- 8 mu J/cm(2).