Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Trimethylethoxysilane liquid-phase hydrolysis equilibrium and dimerization kinetics : catalyst, non-ideal mixing, and the condensation route

Rankin, S E and Sefcik, J and McCormick, A V (1999) Trimethylethoxysilane liquid-phase hydrolysis equilibrium and dimerization kinetics : catalyst, non-ideal mixing, and the condensation route. Journal of Physical Chemistry A, 103 (21). pp. 4233-4241. ISSN 1089-5639

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Although the kinetics of organoethoxysilane hydrolytic (poly)condensation have been studied under kinetically simplified conditions, materials are actually synthesized from nonideal mixtures with high monomer and catalyst concentrations. Using Si-29 nuclear magnetic resonance, we study the hydrolysis of trimethylethoxysilane and the dimerization of the resulting silanol in aqueous ethanol at monomer and catalyst concentrations typical of organically modified silicate synthesis. Under acidic conditions, we find that when (and only when) the effects of solvent composition on catalyst activity are considered, it becomes clear that water-producing condensation is the dominant dimerization route. Under basic conditions, the extent of deprotonation of the weakly acidic silanol passes through a minimum during reaction, thereby producing an anomolous trend in reaction rate. This necessitates a kinetic model which is first order in both silanol and deprotonated silanol and which accounts for changing deprotonation.