Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Kinetic and thermodynamic issues in the early stages of sol-gel processes using silicon alkoxides

Sefcik, J and McCormick, A V (1997) Kinetic and thermodynamic issues in the early stages of sol-gel processes using silicon alkoxides. Catalysis Today, 35 (3). pp. 205-223. ISSN 0920-5861

Full text not available in this repository.Request a copy from the Strathclyde author


An understanding of the chemical processes that take place in the earliest stages of a sol-gel preparation can provide the potential to better control microstructural evolution of a catalyst. While the desired catalyst properties depend on specific details of a catalytic application, in general one wants at least to control textural and chemical homogeneity. Silica provides an excellent test system for the study of sol-gel processes starting from alkoxide precursors as it can exhibit a wide variety of structure and has been extensively studied. In this review the features of tetraethoxysilane (TEOS) polymerization as observed by Si-29-NMR spectroscopy are summarized. Trends in hydrolysis and condensation with increasing oligomer size are identified. The kinetics and equilibrium of these reactions, metastability and phase separation are reviewed. Finally we suggest a comprehensive reaction engineering picture of TEOS polymerization with special focus on the crossover between gelation and precipitation. Selected comments on other alkoxides, non-alkoxides, and on multicomponent formulations are also offered.