Reactions of copper macrocycles with antioxidants and HOCl : potential for biological redox sensing
Sowden, Rebecca J. and Trotter, Katherine D. and Dunbar, Lynsey and Craig, Gemma and Erdemli, Omer and Spickett, Corinne and Reglinski, John (2013) Reactions of copper macrocycles with antioxidants and HOCl : potential for biological redox sensing. BioMetals, 26 (1). pp. 85-96. ISSN 0966-0844 (https://doi.org/10.1007/s10534-012-9596-9)
Full text not available in this repository.Request a copyAbstract
A series of simple copper N2S2 macrocycles were examined for their potential as biological redox sensors, following previous characterization of their redox potentials and crystal structures. The divalent species were reduced by glutathione or ascorbate at a biologically relevant pH in aqueous buffer. A less efficient reduction was also achieved by vitamin E in DMSO. Oxidation of the corresponding univalent copper species by sodium hypochlorite resulted in only partial (~65 %) recovery of the divalent form. This was concluded to be due to competition between metal oxidation and ligand oxidation, which is believed to contribute to macrocycle demetallation. Electrospray mass spectrometry confirmed that ligand oxidation had occurred. Moreover, the macrocyclic complexes could be demetallated by incubation with EDTA and bovine serum albumin, demonstrating that they would be inappropriate for use in biological systems. The susceptibility to oxidation and demetallation was hypothesized to be due to oxidation of the secondary amines. Consequently these were modified to incorporate additional oxygen donor atoms. This modification led to greater resistance to demetallation and ligand oxidation, providing a better platform for further development of copper macrocycles as redox sensors for use in biological systems.
ORCID iDs
Sowden, Rebecca J., Trotter, Katherine D., Dunbar, Lynsey, Craig, Gemma, Erdemli, Omer ORCID: https://orcid.org/0000-0002-4179-0112, Spickett, Corinne and Reglinski, John ORCID: https://orcid.org/0000-0002-0263-4168;-
-
Item type: Article ID code: 43985 Dates: DateEventFebruary 2013PublishedSubjects: Science > Chemistry Department: Faculty of Science > Pure and Applied Chemistry
Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical SciencesDepositing user: Pure Administrator Date deposited: 04 Jun 2013 10:55 Last modified: 11 Nov 2024 10:25 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/43985