Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Cell spreading correlates with calculated logP of amino acid-modified surfaces

Rawsterne, Rachel E. and Todd, Simon J. and Gough, Julie E. and Farrar, David and Rutten, Frank J. M. and Alexander, Morgan R. and Ulijn, Rein V. (2007) Cell spreading correlates with calculated logP of amino acid-modified surfaces. Acta Biomaterialia, 3 (5). pp. 715-721. ISSN 1742-7061

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The interactions of cells with synthetic surfaces are a critical factor in biomaterials design and it would be invaluable if these interactions could be precisely controlled and predicted. Hydrophobicity or lipophilicity of the surface is commonly used to rationalize cell attachment to materials. In the pharmaceutical sciences it is common practice to use logP, the partitioning coefficient between water and octanol, as a reliable indicator of the hydrophobicity or lipophilicity of (drug) molecules. A number of methods are available to reliably predict logP values directly from molecular structure. In this paper we demonstrate that logP values calculated on the basis of the molecular structure of a range of surface-tethered groups correlate well with cell spreading. To our knowledge this is the first method to predict cell spreading on chemically modified surfaces via nonspecific interactions. (c) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.