Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Branched peptide actuators for enzyme responsive hydrogel particles

McDonald, Tom O. and Qu, Honglei and Saunders, Brian R. and Ulijn, Rein V. (2009) Branched peptide actuators for enzyme responsive hydrogel particles. Soft Matter, 5 (8). pp. 1728-1734. ISSN 1744-6848

Full text not available in this repository. Request a copy from the Strathclyde author


We demonstrate the preparation of enzyme responsive poly(ethylene glycol) acrylamide hydrogel microparticles (mu PEGA) functionalised by solid phase synthesis with new branched peptide actuators. Branched peptide actuators provide enhanced charge density and overcome electrostatic screening at physiological ionic strength when compared to linear ones which do not show triggered swelling under these conditions. Particle swelling was induced by enzymatic hydrolysis which caused a change in the charge balance of the branched peptide actuators from zwitterionic (neutral) to cationic. Analysis of enzymatic activity and accessibility was undertaken using fluorescence labelling and two-photon microscopy. These experiments revealed that thermolysin could access the core of particles when linear peptides are used, while access was restricted to the surface when using branched actuators. These responsive mPEGA particles were then loaded with a fluorescent labeled dextran by application of a sequential pH change. The payload could be selectively released at physiological ionic strength when exposed to the target enzyme.