Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows

Meng, Jian-Ping and Zhang, Yonghao and Hadjiconstantinou, Nicolas and Radtke, G.A. and Shan, Xiaowen (2013) Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows. Journal of Fluid Mechanics, 718. pp. 347-370. ISSN 0022-1120

[img] PDF
Meng_JP_Zhang_YH_et_al_Pure_Lattice_ellipsoidal_statistical_BGK_model_for_thermal_non_equilibrium_flows_Mar_2013.pdf
Preprint

Download (1MB)

Abstract

A thermal lattice Boltzmann model is constructed on the basis of the ellipsoidal statistical Bhatnagar-Gross-Krook (ES-BGK) collision operator via the Hermite moment representation. The resulting lattice ES-BGK model uses a single distribution function and features an adjustable Prandtl number. Numerical simulations show that using a moderate discrete velocity set, this model can accurately recover steady and transient solutions of the ES-BGK equation in the slip-flow and early transition regimes in the small Mach number limit that is typical of microscale problems of practical interest. In the transition regime in particular, comparisons with numerical solutions of the ES-BGK model, direct Monte Carlo and low-variance deviational Monte Carlo simulations show good accuracy for values of the Knudsen number up to approximately 0:5. On the other hand, highly non-equilibrium phenomena characterized by high Mach numbers, such as viscous heating and force-driven Poiseuille flow for large values of the driving force, are more difficult to capture quantitatively in the transition regime using discretizations that have been chosen with computational efficiency in mind such as the one used here, although improved accuracy is observed as the number of discrete velocities is increased.