Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Solid-state interferometric interrogator and multiplexer for high-speed dynamic and absolute FBG wavelength measurement

Orr, Philip and Perry, Marcus and Fusiek, Grzegorz and Niewczas, Pawel (2013) Solid-state interferometric interrogator and multiplexer for high-speed dynamic and absolute FBG wavelength measurement. In: Proceedings of SPIE Volume 8794. SPIE--The International Society for Optical Engineering.. ISBN 9780819496348

[img] PDF (Solid-State interferometric interrogator and multiplexer for high-speed dynamic and absolute FBG wavelength measurement)
OPFN_EWOFS13_Submit.pdf
Accepted Author Manuscript

Download (506kB)

    Abstract

    We present a solid-state FBG array interrogator and multiplexer capable of determining absolute FBG wavelengths and of providing high-speed, high-resolution static and dynamic measurements. Using a described procedure, deployable on multiplexing passive-interferometric schemes, the system is able to determine initial sensor wavelengths and thereafter track wavelength changes with interferometric resolution. The scheme allows high-resolution interrogation of FBG sensor arrays to be applied to many industrial applications, where previously the lack of combined absolute and quasi-static wavelength measurement precluded the use of interferometric techniques. Using a preliminary laboratory embodiment, we demonstrate a wavelength determination accuracy of <0.3 nm and a measurement resolution of 10 fm/√Hz, and propose pathways to improved performance and miniaturisation.