Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

1.5 Gbit/s multi-channel visible light communications using CMOS-controlled GaN-based LEDs

Zhang, Shuailong and Watson, Scott and McKendry, Jonathan and Massoubre, David and Cogman, Andrew and Gu, Erdan and Henderson, R.K. and Kelly, A.E. and Dawson, Martin (2013) 1.5 Gbit/s multi-channel visible light communications using CMOS-controlled GaN-based LEDs. Journal of Lightwave Technology, 31 (8). pp. 1211-1216. ISSN 0733-8724

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

An on-chip multi-channel visible light communication (VLC) system is realized through a blue (450 nm) GaN-based micron-size light-emitting diode (μLED) array integrated with complementary metal-oxide-semiconductor (CMOS) electronics. When driven by a custom-made CMOS driving board with 16 independent parallel data input ports, this μLED array device is computer controllable via a standard USB interface and is capable of delivering high speed parallel data streams for VLC. A total maximum error-free data transmission rate of 1.5 Gbit/s is achieved over free space by modulating four μLED pixels simultaneously using an on-off key non-return to zero modulation scheme. Electrical and optical crosstalk of the system has also been investigated in detail and the further optimization of CMOS design to minimize the crosstalk is proposed.