Picture of virus

Open Access research that helps to deliver "better medicines"...

Strathprints makes available scholarly Open Access content by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), a major research centre in Scotland and amongst the UK's top schools of pharmacy.

Research at SIPBS includes the "New medicines", "Better medicines" and "Better use of medicines" research groups. Together their research explores multidisciplinary approaches to improve understanding of fundamental bioscience and identify novel therapeutic targets with the aim of developing therapeutic interventions, investigation of the development and manufacture of drug substances and products, and harnessing Scotland's rich health informatics datasets to inform stratified medicine approaches and investigate the impact of public health interventions.

Explore Open Access research by SIPBS. Or explore all of Strathclyde's Open Access research...

Taming the shrew : [TMEDALi-Zn(C2H4)(2)L] as a model compound for anionic ethene polymerisation

Sassmannshausen, Joerg and Klett, Jan and Kennedy, Alan R. and Parkinson, John A. and Armstrong, David (2013) Taming the shrew : [TMEDALi-Zn(C2H4)(2)L] as a model compound for anionic ethene polymerisation. New Journal of Chemistry, 37 (2). pp. 494-501. ISSN 1144-0546

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We describe the synthesis of the compound [(TMEDA)Li(mu-TMP)(mu-CH=CH2)Zn(C2H3)] (1) (TMEDA = N,N,N',N'-tetramethylethylenediamine, TMP = 2,2,6,6-tetramethylpiperidide), which serves as a potential model compound for anionic ethene polymerisation, and its decomposition into the metallated compound [Li(mu-Me2NCH2CH2N(Me)CH2)(mu-TMP)Zn(C2H3)] (4). The previously reported compound [(PMDETA)K(mu-TMP)(mu-CHQCH(2))-Zn(CH2SiMe3)] (2) (PMDETA = N,N,N',N '',N ''-pentamethyldiethylene-triamine) and 1 are used as potential model compounds for anionic ethene polymerisation. Detailed Density Functional Theory (DFT) at the B3LYP/6-311G(d,p) level of theory on both 1 and 2 in conjunction with Bader AIM and NBO analyses revealed a substantial interaction between the Zn-CH atom and the Li (in 1, d(Li-CH) = 2.43 angstrom) or K (in 2, d(K-CH) = 3.01 angstrom). In fact, in the case of 1, this interaction is even stronger (estimated to be 20-30 kJ mol(-1)) than those reported in the previously reported DFT studies of the reaction with butyl lithium and ethene in the presence of diamino ligands. Our theoretical results are in good agreement with experimentally observed parameters.