Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Energetics of paraplegic cycling : a new theoretical framework and efficiency characterisation for untrained subjects

Hunt, K. J. and Saunders, B. A. and Perret, C. and Berry, H. and Allan, David. B. and Donaldson, N. and Kakebeeke, T. H. (2007) Energetics of paraplegic cycling : a new theoretical framework and efficiency characterisation for untrained subjects. European Journal of Applied Physiology and Occupational Physiology, 101 (3). pp. 277-285. ISSN 1439-6327

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Complete lower-limb paralysis resulting from spinal cord injury precludes volitional leg exercise, leading to muscle atrophy and physiological de-conditioning. Cycling can be achieved using phased stimulation of the leg muscles. With training there are positive physiological adaptations and health improvement. Prior to training, however, power output may not be sufficient to overcome losses involved in rotating the legs and little is known about the energetics of untrained paralysed muscles. Here we propose efficiency measures appropriate to subjects with severe physical impairment performing cycle ergometry. These account for useful internal work (i.e. muscular work done in moving leg mass) and are applicable even for very low work rates. Experimentally, we estimated total work efficiency of ten untrained subjects with paraplegia to be 7.6 +/- 2.1% (mean +/- SD). This is close to values previously reported for anaesthetised able-bodied individuals performing stimulated cycling exercise, but is less than 1/3 of that of able-bodied subjects cycling volitionally. Correspondingly, oxygen cost of the work (38.8 +/- 13.9 ml min(-1) W-1) was found to be similar to 3.5 times higher. This indicates the need, for increased power output from paralysed subjects, to maximise muscle strength through training, and to improve efficiency by determining better methods of stimulating the individual muscles involved in the exercise.