Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Effect of torch angle on arc properties and weld pool shape in stationary GTAW

Parvez, Shahid and Abid, Muhammad and Nash, David and Fawad, H. and Galloway, Alexander (2013) Effect of torch angle on arc properties and weld pool shape in stationary GTAW. Journal of Engineering Mechanics, 139 (9). pp. 1268-1277. ISSN 0733-9399

[img]
Preview
PDF
Nash_DH_Galloway_AM_Pure_Effect_of_torch_angle_on_arc_properties_and_weld_pool_shape_in_stationary_GTAW_23_Sep_2012.pdf
Preprint

Download (19MB)| Preview

    Abstract

    In this paper, a three dimensional numerical simulation is performed on a stationary arc to study the effect of torch angle in gas tungsten arc welding (GTAW) of SS304 stainless steel. A comparison has been made to investigate 90o and 70o torch angles and analyze the effect on arc and weld pool shape. Current density, heat flux and gas shear stress are calculated in the arc region and are used as input to the workpiece to determine the weld pool. Buoyancy and Marangoni shear also affect the weld pool shape and are taken into account. The computed and experimental results are observed symmetric for 90o torch angle. For 70o torch angle, current density and hence the heat flux due to electron contribution is found the maximum behind and heat flux due to conduction and convection is found the maximum ahead of the electrode tip in the welding direction. This makes the maximum of total heat flux symmetric along the arc center. Heat flux due to conduction and convection decreases as the torch angle decreases resulting in a shallow weld pool. The nonsymmetric “w” shaped weld pool is developed by the combined effect of the gas shear and Marangoni convection. It is found that for 70o torch angle, the weld pool becomes non-symmetric, shallow and wide ahead of the electrode tip in the welding direction. The numerical weld pool shapes are verified through experiments.