Analytical upper bound on optimum joint decoding capacity of Wyner GCMAC using Hadamard inequality
Shakir, Muhammad Zeeshan and Durrani, Tariq and Alouini, M S; (2011) Analytical upper bound on optimum joint decoding capacity of Wyner GCMAC using Hadamard inequality. In: 2011 8th IEEE international symposium on wireless communication systems. IEEE, New York, pp. 874-878. ISBN 9781612844039 (https://doi.org/10.1109/ISWCS.2011.6125287)
Full text not available in this repository.Request a copyAbstract
This paper presents an original analytical expression for an upper bound on the optimum joint decoding capacity of Wyner circular Gaussian cellular multiple access channel (C-GCMAC) for uniformly distributed mobile terminals (MTs) across the cells. This upper bound is referred to as Hadamard upper bound (HUB) and is a novel application of the Hadamard inequality established by exploiting the Hadamard operation between the channel fading and channel path gain matrices. In this context, we employ an approximation approach based on the estimation of probability density function (PDF) of Hadamard product of two matrices. A closed-form expression has been derived to capture the effect of variable user density in adjacent cells on optimal joint decoding capacity. The results of this paper demonstrate that the analytical HUB based on the proposed approximation approach converges to the theoretical results for medium range of signal to noise ratios and shows a comparable tighter bound on optimum joint decoding capacity.
-
-
Item type: Book Section ID code: 42791 Dates: DateEvent6 November 2011PublishedSubjects: Technology > Electrical engineering. Electronics Nuclear engineering Department: Faculty of Engineering > Electronic and Electrical Engineering Depositing user: Pure Administrator Date deposited: 08 Feb 2013 15:04 Last modified: 05 Jan 2025 14:54 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/42791