Picture of smart phone

Open Access research that is better understanding human-computer interaction...

Strathprints makes available scholarly Open Access content by researchers in the Department of Computer & Information Sciences, including those researching information retrieval, information behaviour, user behaviour and ubiquitous computing.

The Department of Computer & Information Sciences hosts The Mobiquitous Lab, which investigates user behaviour on mobile devices and emerging ubiquitous computing paradigms. The Strathclyde iSchool Research Group specialises in understanding how people search for information and explores interactive search tools that support their information seeking and retrieval tasks, this also includes research into information behaviour and engagement.

Explore the Open Access research of The Mobiquitous Lab and the iSchool, or theDepartment of Computer & Information Sciences more generally. Or explore all of Strathclyde's Open Access research...

A metric to represent the evolution of CAD/analysis models in collaborative design

Dremont, Nicolas and Graignic, Pascal and Troussier, Nadege and Whitfield, Robert and Duffy, Alexander (2011) A metric to represent the evolution of CAD/analysis models in collaborative design. In: International Conference in Engineering Design (ICED), 2011-08-15 - 2011-08-18.

[img] PDF
DS68_9_478.pdf
Final Published Version
License: Unspecified

Download (565kB)

Abstract

Computer Aided Design (CAD) and Computer Aided Engineering (CAE) models are often used during product design. Various interactions between the different models must be managed for the designed system to be robust and in accordance with initially defined specifications. Research published to date has for example considered the link between digital mock-up and analysis models. However design/analysis integration must take into consideration the important number of models (digital mock-up and simulation) due to model evolution in time, as well as considering system engineering. To effectively manage modifications made to the system, the dependencies between the different models must be known and the nature of the modification must be characterised to estimate the impact of the modification throughout the dependent models. We propose a technique to describe the nature of a modification which may be used to determine the consequence within other models as well as a way to qualify the modified information. To achieve this, a metric is proposed that allows the qualification and evaluation of data or information, based on the maturity and validity of information and models