Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Modeling adsorption in metal-organic frameworks with open metal sites : propane/propylene separations

Fischer, Michael and Gomes, Jose R. B. and Froba, Michael and Jorge, Miguel (2012) Modeling adsorption in metal-organic frameworks with open metal sites : propane/propylene separations. Langmuir, 28 (22). pp. 8537-8549. ISSN 0743-7463

[img]
Preview
PDF (Fischer-etal-Langmuir2012-propane-propylene-separations)
Fischer_etal_Langmuir2012_propane_propylene_separations.pdf
Accepted Author Manuscript

Download (2MB) | Preview

Abstract

We present a new approach for modeling adsorption in metal-organic frameworks (MOFs) with unsaturated metal centers and apply it to the challenging propane/propylene separation in copper(II) benzene-1,3,5-tricarboxylate (CuBTC). We obtain information about the specific interactions between olefins and the open metal sites of the MOP using quantum mechanical density functional theory. A proper consideration of all the relevant contributions to the adsorption energy enables us to extract the component that is due to specific attractive interactions between the pi-orbitals of the alkene and the coordinatively unsaturated metal. This component is fitted using a combination of a Morse potential and a power law function and is then included into classical grand canonical Monte Carlo simulations of adsorption. Using this modified potential model, together with a standard Lennard-Jones model, we are able to predict the adsorption of not only propane (where no specific interactions are present), but also of propylene (where specific interactions are dominant). Binary adsorption isotherms for this mixture are in reasonable agreement with ideal adsorbed solution theory predictions. We compare our approach with previous attempts to predict adsorption in MOFs with open metal sites and suggest possible future routes for improving our model.