Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Molecular simulation of silica/surfactant self-assembly in the synthesis of periodic mesoporous silicas

Jorge, Miguel and Gomes, Jose R. B. and D. S. Cordeiro, M. Natalia and Seaton, Nigel A. (2007) Molecular simulation of silica/surfactant self-assembly in the synthesis of periodic mesoporous silicas. Journal of the American Chemical Society, 129 (50). pp. 15414-15415. ISSN 0002-7863

[img]
Preview
PDF (Jorge-etal-JACS2007-silica-surfactant-self-assembly)
Jorge_etal_JACS2007_silica_surfactant_self_assembly.pdf
Accepted Author Manuscript

Download (563kB) | Preview

Abstract

Understanding the synthesis of periodic mesoporous silica (PMS) is crucial for a more efficient use of these materials and is a necessary first step toward a rational design strategy for the templated synthesis of porous solids. In this paper, the early stages of the synthesis process of PMS materials are simulated directly by molecular dynamics, using realistic atomistic models. It is the first time that such computationally demanding calculations have been attempted. By comparing the self-assembly of cationic surfactants in the presence and absence of silicates, we are able to show that silica promotes the formation of larger aggregates than in a simple surfactant/water solution. The formation of these larger micelles is explained by a strong interaction of the silicate molecules with the surfactant head groups. This strong interaction increases the local concentration of silica at the surface of the micelles, which induces the formation of more condensed silicate species. The surfactant/silica structures observed here are potentially important intermediates in PMS synthesis.