Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Distributed closed-loop EO-STBC for a time-varying relay channel based on kalman tracking

Hussin, Mohammed Nuri and Alrmah, Mohamed Abubaker and Weiss, Stephan (2012) Distributed closed-loop EO-STBC for a time-varying relay channel based on kalman tracking. In: 9th IMA International Conference on Mathematics in Signal Processing, 2012-12-17 - 2012-12-20.

Accepted Author Manuscript

Download (103kB) | Preview


This paper considers distributed closed-loop extended orthogonal space-time block coding (EO-STBC) for amplify-forward relaying over time-varying channels. In between periodically injected pilot symbols for training, the smooth variation of the fading channel coefficients is exploited by Kalman tracking. We show in this paper that the joint variation of both relay channels still motivates the use of a higher-order auto-regressive model for the a priori prediction step within a decision-feedback system, compared to a first-order standard Kalman model. Simulations results compare these two case and highlight the benefits of the proposed higher-order Kalman filter, which offer joint decoding and tracking.