Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Synthesis of ammonia directly from air and water at ambient temperature and pressure

Lan, Rong and Irvine, John T. S. and Tao, Shanwen (2013) Synthesis of ammonia directly from air and water at ambient temperature and pressure. Scientific Reports, 3. ISSN 2045-2322

[img]
Preview
Text (Lan-etal-SR-2013-Synthesis-of-ammonia-directly-from-air-and-water-at-ambient-temperature-and-pressure)
Lan_etal_SR_2013_Synthesis_of_ammonia_directly_from_air_and_water_at_ambient_temperature_and_pressure.pdf
Final Published Version
License: Creative Commons Attribution-NonCommercial-ShareAlike 3.0 logo

Download (944kB) | Preview

Abstract

The N≡N bond (225 kcal mol−1) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N2 separation and H2 production stages. A maximum ammonia production rate of 1.14 × 10−5 mol m−2 s−1 has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future.