Picture of blood cells

Open Access research which pushes advances in bionanotechnology

Strathprints makes available scholarly Open Access content by researchers in the Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) , based within the Faculty of Science.

SIPBS is a major research centre in Scotland focusing on 'new medicines', 'better medicines' and 'better use of medicines'. This includes the exploration of nanoparticles and nanomedicines within the wider research agenda of bionanotechnology, in which the tools of nanotechnology are applied to solve biological problems. At SIPBS multidisciplinary approaches are also pursued to improve bioscience understanding of novel therapeutic targets with the aim of developing therapeutic interventions and the investigation, development and manufacture of drug substances and products.

Explore the Open Access research of SIPBS. Or explore all of Strathclyde's Open Access research...

The reactivity of lattice carbon and nitrogen species in molybdenum (oxy)carbonitrides prepared by single-source routes

AlShalwi, M. and Hargreaves, J. S. J. and Liggat, J. J. and Todd, D. (2012) The reactivity of lattice carbon and nitrogen species in molybdenum (oxy)carbonitrides prepared by single-source routes. Materials Research Bulletin, 47 (5). pp. 1251-1256. ISSN 0025-5408

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Molybdenum (oxy)carbonitrides of different compositions have been prepared from hexamethylenetetramine molybdate and ethylenediamine molybdate precursors and the reactivity of the lattice carbon and nitrogen species within them has been determined by temperature programmed reduction and thermal volatilisation studies. Nitrogen is found to be much more reactive than carbon and the nature of its reactivity is influenced by composition with the presence of carbon enhancing the reactivity of nitrogen. The difference in reactivity observed indicates that molybdenum carbonitrides are not suitable candidates as reagents for which the simultaneous loss of nitrogen and carbon from the lattice would be desirable.