Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

On testing laser ablation processes for asteroid deflection

Gibbings, Alison and Hopkins, John-Mark and Burns, David and Vasile, Massimiliano (2011) On testing laser ablation processes for asteroid deflection. In: IAA Planetary Defense Conference, Protecting Earth from Asteroids: From threat to Action, 2011-05-09 - 2011-05-12.

[img] PDF
Gibbings_A_et_al_Pure_On_testing_laster_ablation_processes_for_asteroid_deflection_May_2011.pdf
Preprint

Download (358kB)

Abstract

Laser surface ablation has been theoretically demonstrated to be an advantageous method in the potential mitigation and deflection of Near Earth Asteroids. However to fully verify this approach a series of experiments were performed that examined the development of the ejecta plume induced by each ablation event. This included the flow rate, velocity and dispersion as a function of the target material’s composition. The rate of degradation onto optical surfaces was also assessed. The results demonstrated the sensitivity of the ablation process to the specific laser characteristics and properties of the chosen target material. This is relative to the focal point of the laser, the volumetric removal of the ejected material, the material phase changes within the ablation volume and the dispersion of the ejecta plume.