Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Orbit determination and control for the European Student Moon Orbiter

Zuiani, Federico and Gibbings, Alison and Vetrisano, Massimo and Rizzi, Francesco and Martinez, Cesar and Vasile, Massimiliano (2012) Orbit determination and control for the European Student Moon Orbiter. Acta Astronautica, 79. pp. 67-78. ISSN 0094-5765

[img]
Preview
PDF
Vasile_M_et_al_Orbit_determination_and_control_for_the_European_Student_Oct_2012.pdf
Final Published Version

Download (1MB)| Preview

    Abstract

    This paper presents the preliminary navigation and orbit determination analyses for the European Student Moon Orbiter. The severe constraint on the total mission Delta nu and the all-day piggy-back launch requirement imposed by the limited available budget, led to the choice of using a low-energy transfer, more specifically a Weak Stability Boundary one, with a capture into an elliptic orbit around the Moon. A particular navigation strategy was devised to ensure capture and fulfil the requirement for the uncontrolled orbit stability at the Moon. This paper presents a simulation of the orbit determination process, based on an extended Kalman filter, and the navigation strategy applied to the baseline transfer of the 2011-2012 window. The navigation strategy optimally allocates multiple Trajectory Correction Manoeuvres to target a so-called capture corridor. The capture corridor is defined, at each point along the transfer, by back-propagating the set of perturbed states at the Moon that provides an acceptable lifetime of the lunar orbit. (C) 2012 Elsevier Ltd. All rights reserved.