Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Efficient Gaussian process based on BFGS updating and logdet approximation

Leithead, W.E. and Zhang, Y. and Leith, D.J. (2005) Efficient Gaussian process based on BFGS updating and logdet approximation. In: Proceedings of the 16th IFAC World Congress, 2005. UNSPECIFIED, p. 217. ISBN 978-3-902661-75-3

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Gaussian process (GP) is a Bayesian nonparametric regression model, showing good performance in various applications. However, its hyperparameterestimation procedure suffers from numerous covariance-matrix inversions of prohibitively O(N3) operations. In this paper, we propose using the quasi-Newton BFGS O(N2)-operation formula to update recursively the inverse of covariance matrix at every iteration. As for the involved log det computation, a power-series expansion based approximation and compensation scheme is proposed with only 50N2 operations. A number of numerical tests are performed based on the 2D- sinusoidal regression example and the Wiener-Hammerstein identification example. It is shown that by using the proposed implementation, more than 80% O(N3) operations are eliminated, and the speedup of 5 - 9 can be achieved.