Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Temperature response of an acoustically-forced turbulent lean premixed flame : a quantitative experimental determination

Chrystie, Robin S.M. and Burns, Iain and Kaminski, C.F. (2013) Temperature response of an acoustically-forced turbulent lean premixed flame : a quantitative experimental determination. Combustion Science and Technology, 185 (1). pp. 180-199. ISSN 0010-2202

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Temperature measurements have been taken on an acoustically-forced lean premixed turbulent bluff-body stabilised flame. The burner used in this study is a test-bed to investigate thermo acoustic instability in gas-turbine engines at the University of Cambridge. Numerous experiments have been performed on the burner, one of which used two-line OH planar laser induced fluorescence to measure temperature. Here, we employ vibrational coherent anti-Stokes Raman scattering (CARS) of nitrogen as an alternative to measure temperature, circumventing the limitations of the former method. The use of nitrogen CARS avoids the problem of probing regions of the flame with low OH concentrations that resulted in erroneous temperature. Such an application of CARS showed that the results from previous efforts were systematically biased up to 47% close to the bluff-body. We also critically review the limitations of CARS used in our experiments, pertaining to spatial resolution and associated biasing further downstream from the bluff-body. Using the more accurate results from this work, more up-to-date CFD models of the burner can be validated, with the aim of improved understanding and prediction of thermo acoustic instability in gas turbines.