Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Large-amplitude cycles of Daphnia and its algal prey in enriched environments

McCauley, E. and Nisbet, R.M. and Murdoch, W.W. and de Roos, A.M. and Gurney, William (1999) Large-amplitude cycles of Daphnia and its algal prey in enriched environments. Nature, 402 (9). pp. 653-657. ISSN 0028-0836

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Ecological theory predicts that stable populations should yield to large-amplitude cycles in richer environments1±3. This does not occur in nature. The zooplankton Daphnia and its algal prey in lakes throughout the world illustrate the problem4±6. Experiments show that this system its the theory's assumptions7±9, yet it is not destabilized by enrichment 6. We have tested and rejected four of ive proposed explanations 10. Here, we investigate the fifth mechanism: inedible algae in nutrient-rich lakes suppress cycles by reducing nutrients available to edible algae. We found three novel results in nutrient-rich microcosms from which inedible algae were excluded. First, as predicted by theory, some Daphniaedible algal systems now display large-amplitude predator-prey cycles. Second, in the same environment, other populations are stable, showing only small-amplitude demographic cycles. Stability is induced when Daphnia diverts energy from the immediate production of young. Third, the system exhibits coexisting attractors -a stable equilibrium and large-amplitude cycle. We describe a mechanism that flips the system between these two states.