Picture of blood cells

Open Access research which pushes advances in bionanotechnology

Strathprints makes available scholarly Open Access content by researchers in the Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) , based within the Faculty of Science.

SIPBS is a major research centre in Scotland focusing on 'new medicines', 'better medicines' and 'better use of medicines'. This includes the exploration of nanoparticles and nanomedicines within the wider research agenda of bionanotechnology, in which the tools of nanotechnology are applied to solve biological problems. At SIPBS multidisciplinary approaches are also pursued to improve bioscience understanding of novel therapeutic targets with the aim of developing therapeutic interventions and the investigation, development and manufacture of drug substances and products.

Explore the Open Access research of SIPBS. Or explore all of Strathclyde's Open Access research...

Simple representations of biomass dynamics in structured populations

Nisbet, R.M. and McCauley, E. and Gurney, William and Murdoch, W.W. and de Roos, A.M. (1996) Simple representations of biomass dynamics in structured populations. In: Case studies in mathematical modeling. Prentice Hall, New Jersey, pp. 61-79. ISBN 9780135740392

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

The research described in this chapter represents part of a larger program whose aim is to provide the knowledge and tools to better understand the dynamics of natural and managed ecosystems. More specifically, we aim to produce mathematical models that can translate the effects of environmental stress on individual aquatic organisms to the dynamics of populations. One very practical concern motivates this work: while environmental management demands understanding of long-term effects of stress on populations of plants and animals, much experimental information relates only to short-term effects on individuals. We are addressing this concern by establishing how to develop testable, individual-based models (DeAngelis and Gross 1992) capable of predicting population responses to environmental change. For example, the physiological response of many animals to certain forms of environmental stress (e.g., eutrophication, toxicants, lake acidification) involves changes in the rates of assimilation and utilization of food. Our overall aim is to predict the consequences for the dynamics of natural populations of these changes in individual energy acquisition and use.