Density functional theory for Yukawa fluids
Hatlo, Marius M. and Banerjee, Priyanka and Forsman, Jan and Lue, Leo (2012) Density functional theory for Yukawa fluids. Journal of Chemical Physics, 137 (6). pp. 1-9. 064115. ISSN 0021-9606 (https://doi.org/10.1063/1.4742154)
Full text not available in this repository.Request a copyAbstract
We develop an approximate field theory for particles interacting with a generalized Yukawa potential. This theory improves and extends a previous splitting field theory, originally developed for counterions around a fixed charge distribution. The resulting theory bridges between the second virial approximation, which is accurate at low particle densities, and the mean-field approximation, accurate at high densities. We apply this theory to charged, screened ions in bulk solution, modeled to interact with a Yukawa potential; the theory is able to accurately reproduce the thermodynamic properties of the system over a broad range of conditions. The theory is also applied to "dressed counterions," interacting with a screened electrostatic potential, contained between charged plates. It is found to work well from the weak coupling to the strong coupling limits. The theory is able to reproduce the counterion profiles and force curves for closed and open systems obtained from Monte Carlo simulations. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4742154]
ORCID iDs
Hatlo, Marius M., Banerjee, Priyanka, Forsman, Jan and Lue, Leo ORCID: https://orcid.org/0000-0002-4826-5337;-
-
Item type: Article ID code: 41767 Dates: DateEvent13 August 2012Published19 July 2012AcceptedSubjects: Science > Chemistry > Physical and theoretical chemistry Department: Faculty of Engineering > Chemical and Process Engineering Depositing user: Pure Administrator Date deposited: 26 Oct 2012 13:59 Last modified: 05 Jan 2025 13:38 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/41767