Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Self-organisation, scale and stability in a spatial predator-prey interaction

Gurney, William and Veitch, A.R. (2000) Self-organisation, scale and stability in a spatial predator-prey interaction. Bulletin of Mathematical Biology, 62 (1). pp. 61-86. ISSN 0092-8240

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Simple predator-prey models often predict extreme instability in interactions where the prey are depressed well below their carrying capacity. Although the behaviour of some laboratory systems conforms to this pattern, field and mesocosm studies generally show prolonged co-existence of prey and predator. Prominent among the possible causes of this discrepancy are the effects of spatial heterogeneity. In this paper we show that both discrete and continuous representations of the spatial Rosenzweig-McArthur model with immobile prey can be stabilized by self-organized prey heterogeneity. This concordance of behaviour closely parallels that which we have previously established in the context of invasion waves. We use the continuous model variant to calculate the characteristic spatial scales of the self-organized structures. The discrete variant forms the basis of a simulation study demonstrating the variety of stable structures and elucidating their relation to the history of the system. We note that all stable prey distributions take the form of a network of occupied patches separated by prey-free regions, and liken the process which generates such assemblages to the formation of a landscape mozaic.