Picture of sea vessel plough through rough maritime conditions

Innovations in marine technology, pioneered through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Naval Architecture, Ocean & Marine Engineering based within the Faculty of Engineering.

Research here explores the potential of marine renewables, such as offshore wind, current and wave energy devices to promote the delivery of diverse energy sources. Expertise in offshore hydrodynamics in offshore structures also informs innovations within the oil and gas industries. But as a world-leading centre of marine technology, the Department is recognised as the leading authority in all areas related to maritime safety, such as resilience engineering, collision avoidance and risk-based ship design. Techniques to support sustainability vessel life cycle management is a key research focus.

Explore the Open Access research of the Department of Naval Architecture, Ocean & Marine Engineering. Or explore all of Strathclyde's Open Access research...

Generation cycles in stage-structured populations

Jansen, V.A.A. and Nisbet, R.M. and Gurney, William (1990) Generation cycles in stage-structured populations. Bulletin of Mathematical Biology, 52 (3). pp. 375-396. ISSN 0092-8240

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Some insect populations exhibit cycles in which successive population peaks may correspond to effectively discrete generations. Motivated by this observation, we investigate the structure of matriarchal generations in five simple, continuous-time, stage structure models in order to determine the proportion of individuals in one population peak who are the offspring of individuals in the pervious peak. We conclude that in certain models (including a model of Nicholson's blowflies) successive population peaks do not correspond to discrete generations, whereas in others (including some models of uniform larval competition) successive peaks may well approximate discrete generations. In all models, however, there is eventually significant overlap of generations.