Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Augmented visual feedback of movement performance to enhance walking recovery after stroke : study protocol for a pilot randomised controlled trial

Thikey, Heather and Grealy, Madeleine and van Wijck, Frederike and Barber, Mark and Rowe, Philip (2012) Augmented visual feedback of movement performance to enhance walking recovery after stroke : study protocol for a pilot randomised controlled trial. Trials, 13 (1).

[img]
Preview
Text (Thikey-etal-Trials-2012-Augmented-visual-feedbac--of-movement-performance)
Thikey_etal_Trials_2012_Augmented_visual_feedbac_of_movement_performance.pdf - Final Published Version
License: Creative Commons Attribution 2.5 logo

Download (816kB) | Preview

Abstract

Increasing evidence suggests that use of augmented visual feedback could be a useful approach to stroke rehabilitation. In current clinical practice, visual feedback of movement performance is often limited to the use of mirrors or video. However, neither approach is optimal since cognitive and self-image issues can distract or distress patients and their movement can be obscured by clothing or limited viewpoints. Three-dimensional motion capture has the potential to provide accurate kinematic data required for objective assessment and feedback in the clinical environment. However, such data are currently presented in numerical or graphical format, which is often impractical in a clinical setting. Our hypothesis is that presenting this kinematic data using bespoke visualisation software, which is tailored for gait rehabilitation after stroke, will provide a means whereby feedback of movement performance can be communicated in a more meaningful way to patients. This will result in increased patient understanding of their rehabilitation and will enable progress to be tracked in a more accessible way. The hypothesis will be assessed using an exploratory (phase II) randomised controlled trial. Stroke survivors eligible for this trial will be in the subacute stage of stroke and have impaired walking ability (Functional Ambulation Classification of 1 or more). Participants (n = 45) will be randomised into three groups to compare the use of the visualisation software during overground physical therapy gait training against an intensity-matched and attention-matched placebo group and a usual care control group. The primary outcome measure will be walking speed. Secondary measures will be Functional Ambulation Category, Timed Up and Go, Rivermead Visual Gait Assessment, Stroke Impact Scale-16 and spatiotemporal parameters associated with walking. Additional qualitative measures will be used to assess the participant's experience of the visual feedback provided in the study. Results from the trial will explore whether the early provision of visual feedback of biomechanical movement performance during gait rehabilitation demonstrates improved mobility outcomes after stroke and increased patient understanding of their rehabilitation.